效应大小:effect size(ES)

ES是衡量处理效应大小的指标,与显著性检验不同,这些指标是不受样本容量影响的。它表示不同处理下的总体均值之间差异的大小,可以在不同研究之间进行比较。一般用于针对某一研究领域内的元分析中,经常见于心理,教育,行为研究等。

在一般统计分析中,一般我们只报告统计量F或t值,与p-value;实际上这些统计量对数据的描述只是描述了一小部分;传统的描述还应包括样本量,样本均数与标准差;但这些传统的描述量基本只是对单变量分布的描述,而对两组变量或处理效应的描述,则用effect size更加直观。它在平均数检验中表示的是两组样本分布的总体的非重叠程度;ES越大,重叠程度越小,效应明显;ES越小则相反。可以这样理解,不管你取哪种样本,ES是作为为一种标准的均数差异的估计,它与当前样本无关。显然,传统的推断统计量F及p-value只是说明均数差异,但这种差异脱离样本推广到不同的抽样群体,差异究竟有多大,需要用ES来描述。(可以这样来形容F值与ES值:F值表示的是样本1与样本2之间的显著性;而ES值是表示在样本1的总体与样本2的总体中随便抽取两个样本,这种差异显著性出现的可能性)。

作者:Ivring_Ren
链接:https://www.jianshu.com/p/343c92053eda
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

「点点赞赏,手留余香」

    还没有人赞赏,快来当第一个赞赏的人吧!
0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论